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The nonlinear interaction between a pair of symmetric, oblique, and spatial instability

modes is studied in the long-wave limit using asymptotic methods. The base flow is

taken to be a supersonic mixing layer whose Mach number is such that the

corresponding vortex sheet is marginally stable according to Miles' criterion. It is

shown that the amplitude of the mode obeys a nonlinear integro-differential equation.

Numerical solutions of this equation show that, when the obliqueness angle is less than

7r/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The

solution terminates in a singularity at a finite streamwise location. This result is

reminiscent of that obtained in the vicinity of the neutral point by other authors in

several different types of flows. On the other hand, when the obliqueness angle is

more than n/4, the streamwise development of the amplitude is characterized by a series

of modulations. This arises from the fact that the nonlinear term in the amplitude

equation may be either stabilizing or destabilizing, depending on the value of the

streamwise coordinate. However, even in this case the amplitude of the disturbance

increases, though not as rapidly as in the case for which the angle is less than n/4.

Quite generally then, the nonlinear interaction between two oblique modes in a

supersonic mixing layer enhances the growth of the disturbance.
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1. Introduction

Recent interest in the linear and nonlinear stability of supersonic boundary layers

and free-shear flows has been sparked by the occurrence of these flows in the external

and internal aerodynamics of high-speed airplanes and their propulsion systems. While

the subject of the stability of supersonic flows is very intricate, there are (at least) three

rough rules whose general validity has been confirmed in many independent studies:

First, the instability of a shear flow becomes more benign with increasing Math

number; second, the most unstable modes are oblique_ and, finally, there are several

modes of instability--some of these may appear or disappear for certain ranges of Mach

number and temperature. Because of this intricate behavior (which can be calculated

numerically), it is desirable to obtain some theoretical understanding of certain limiting

cases in order to provide a framework for a physical understanding.

The present study deals with the (nonlinear) stability of a supersonic mixing layer

in the long-wave limit. The classic work in this general area is due to Miles (1958) and

Fejer & Miles (1963). who examined the small-disturbance (i.e. linearized) motion of a

plane vortex sheet that is subjected to two- and three-dimensional disturbances.

respectively. They found that the vortex sheet becomes marginally stable above a

critical supersonic Math number, and this Math number is inversely proportional to

cos 0, where 0 is the propagation angle of the oblique mode. In addition, there are

three of these marginally stable modes, which we label according to their phase speeds

as the fast, slow, and intermediate modes. These classic results of Miles are clearly

consistent with the previously stated rough guides for supersonic instabilities.

On the other hand, the numerical studies of Jackson & Grosch (1989) indicate that

the slow and fast modes are actually unstable in a mixing layer of finite (but small)

thickness, with the growth rates depending on the square of the small wavenumber in

the long-wave limit, while the frequency is directly proportional to the wavenumber

itself. Therefore. the time scale associated with the exponential growth of the
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disturbance is very much longer than its period of oscillation. Thus, asymptotic

analysis (e.g. multiple scales) can be used to describe the instability of the base flow.

Furthermore, the effects of small nonlinearities may be incorporated into our analysis in

order to affect the growth of the fundamental disturbance through cubic interactions.

The present study is very different from that of Artola & Majda (1987). They

examined the resonant response of a supersonic vortex sheet to an incident acoustic

wave and determined the conditions for the evolution of a kink mode (i.e. a

discontinuity in the slope of the vortex sheet). The principal difference is that Artola

& Majda were not concerned with the details of continuous base velocity and

temperature profiles; their assumed wavelengths are so long that, for all practical

purposes, the mixing layer appears to have negligible thickness. That is, they were

interested in the nonlinear evolution of the vortex sheet as if it were a sharp contact

discontinuity separating the two uniform external streams. This, of course, is not the

case for the problem here. in which the wavenumbers (or frequencies) are assumed to

be somewhat higher so that the nonlinear evolution of the disturbance is entirely

dictated by the details of the continuous base flow profiles, especially in the vicinity of

the critical level. At this level, the convection speed of the instability mode matches the

local fluid speed.

It should be clear from the preceding remarks that the importance of the

nonlinearities in the present study has its roots in the critical layer where the instability

mode is approximately steady (in a reference frame moving at the convection speed).

Thus, the familiar nonlinear terms in the usual substantial derivative cannot be ignored

in this layer with respect to the unsteadiness; in essence, we have a nonlinear critical

layer.

The importance of critical layers in the stability of shear flows has been recognized

for a long time (Maslowe 1981). Usually critical layers arise for instability modes near

the neutral wavenumber (or frequency), but they can also arise at low frequencies in
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incompressible or compressible wail-bounded flows (Goldstein, Durbin & Leib 1987;

Gajjar 1993). However. they cannot occur in an incompressible mixing layer, where

the instability is of the Kelvin-Helmholtz type, because both the growth rate and

frequency are proportional to the (small) wavenumber.

The asymptotic form of the nonlinearity in the critical layer may manifest itself in

several canonical forms, depending on the precise balance between the (slight)

unsteadiness, the nonlinear terms, and (possibly) the viscous terms in the equations of

motion. One of these canonical forms is the classical Landau-Stuart cubic term in the

evolution equation for the amplitude of the fundamental (Drazin & Reid. 1981. p. 370).

Other forms, probably much less familiar but equally important and ubiquitous, are the

strongly nonlinear phase-jump condition discovered by Benney & Bergeron (1969) and

subsequently developed by Stewartson (1981). Goldstein et al. (1987). and others, and the

Hickernell (1984) cubic integral term in the amplitude equation.

In order to describe the evolution of a symmetric pair of interacting oblique

instability modes on a shear flow, the integro-differential equation of Hickernell. or its

variants, appears to be the most prevalent (Goldstein & Choi 1989; Goidstein & Leib

1989; Goldstein & Lee 1992). In this case. the nonlinearity in the critical layer occurs

in a hierarchical fashion: The lowest-order interaction of the fundamental mode with

itself generates the mean flow distortion and the first harmonic, and a subsequent

interaction of these newly generated disturbances with the fundamental reproduces the

latter at cubic order in the (small) amplitude. For a properly posed physical problem

involving spatial instability, each member of this hierarchy of equations is solved with

vanishing boundary conditions imposed far upstream. The respective solutions are

expressible in terms of integrals of the yet-unknown amplitude, and the products of

these integrals, caused by the nonlinearities, ultimately yield the integro-differential

equation for the amplitude.
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Since the flow outside the critical layer is unsteady, the nonlinear terms are

relatively unimportant here, so the flow is governed by linearized equations. Because

of the very tedious and distracting algebraic complexity that arises in the nonlinear

problem, we first obtain the linearized solutions. These solutions will be valid

everywhere (including the critical layer at lowest order). Then, in §7. we calculate the

nonlinear terms in the critical layer and determine the effects of these terms on the

amplitude equation. The key result is (44).

The outline of the paper is as follows: The problem is formulated in §2, and the

scalings associated with the asymptotic analysis are introduced. It is shown that the

cross-stream behavior of a low-frequency instability mode is determined by a triple-

layer structure in the sense of matched asymptotic expansions. The relevant solutions

in each of these layers are derived in §_3, 4, and 5; this discussion culminates in

amplitude equation (31a) for the linearized problem.

In §6, the amplitude scaling for the nonlinear problem is introduced. This is done

by requiring that the slight unsteadiness of the fundamental (i.e. its weak instability) be

balanced by the nonlinear convective derivative, as well as other nonlinearities in the

equations of motion. The resultant nonlinear equations in the critical layer are solved

in §7 and in Appendix B. The net result is the appearance of one extra term in (31a);

the normalized form of this term is given by the integral in (44). This is the final

theoretical result--it includes cubic-type integrals of the amplitude over the entire life

of the instability mode.

In closing this section, there are three points that we wish to emphasize. First, the

backbone of the nonlinear theory presented herein is the linear theory. The latter

provides a linear differential equation for the amplitude. Once the nonlinearities in the

critical layer are incorporated into the analysis via the distinguished scaling of the

(small) characteristic amplitude with respect to the (small) characteristic frequency, the

amplitude equation is changed into a nonlinear integro-differential equation.
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Second,the lowest-ordersolution in the critical layer may be written as the

corresponding solution in Goldstein & Lee (1992). denoted by GL, plus an extra term

that is proportional to a parameter A. In other words, if we (artificially) set A - 0, we

recover the results of Goldstein & Lee for the flow field of the oblique modes.

Subsequent products of our solutions always reproduce GL plus some extra terms that

are proportional to suitable powers of A. In order to simplify the presentation of the

nonlinear results, we only give these extra terms in Appendix B. Implicit is the

understanding that the GL terms are available in the literature; in fact, both authors of

this paper derived all terms independently. Agreement was obtained on all fronts,

including with GL (Lee, private communication).

Finally, we establish that a nonlinear integro-differential equation describes the

evolution of the amplitude at low frequencies. It is well known that a similar equation

also holds in the vicinity of the neutral point. Since the growth rates are (numerically)

small at large Mach numbers, it appears plausible that this type of nonlinear equation

should hold for the entire frequency range. Thus we speculate that the qualitative

behavior of a symmetric pair of oblique modes may be understood from an asymptotic

analysis of this type.

2. Formulation of problem

Consider a unidirectional, inviscid, and parallel shear flow with velocity U(y)i.

pressure equal to unity, and density and temperature denoted by P00') and T0(y),

respectively. Arbitrary perturbations in this base flow satisfy

continuity: Dp
D---t+ u • _Tp + P0V • u + _Pb +pV" u-0, (la)

momentum: Du ! _Tp
D---t"+ u • Vu + wU'i .. (lb)3'M2 PO + P '

Dp
energy: D-/ + u • _Tp + 3,(1 + p)_7 • u - 0 , (lc)

state: p - pT o + poT + pT, (ld)
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where u = (u, _, w), p, p, and T are the perturbations in velocity, pressure, density, and

temperature, and the prime denotes differentiation of a function with respect to its

argument (here, it is y). The effects of dissipation and gravity are ignored, and we use

D a a
D_'_ +U-ax

to denote the time derivative following the base flow.

(le)

The geometry is defined in

figure 1; x - (x, y, z) is a Cartesian coordinate system, t denotes time, and _7 - i(O/Ox) +

j(a/0y) + k(O/Oz) is the gradient operator. The equation of state for the base flow

implies PoTo = 1.

All variables are considered nondimensional unless otherwise indicated. Lengths

and velocities are normalized by a reference length and a reference speed (Lre f, Uref),

respectively. These quantities measure a characteristic thickness and a characteristic

speed of the mixing layer. For the purpose of developing the analysis, there is no need

to be more specific about these quantities, whose ratio, Lref/Uref, provides a transit time

for the normalization of time, t. Density, pressure, and temperature are normalized by

their (dimensional) values in the upper stream at y = +oo, but the undisturbed pressure

is actually a constant (set to unity) throughout the mixing layer (as noted earlier). Thus,

p0(+oo) = 7"o(+O0) = 1, and T0(-oo) = const, actually represents the temperature ratio

across the mixing layer. We use the notation (.)± in several different ways: when

applied to the base flow it denotes the value of a quantity, (.), at y = _+oo;sometimes this

value may be unity (e.g. P0.) but, in order to subsequently write our formulae

economically and "symmetrically" with respect to the variables in the upper and lower

streams, we do not evaluate (.)+ explicitly.

In view of our nondimensionalization, M - Uref/are f. where are f = _ref i$ the

(dimensional) unperturbed speed of sound in the upper stream, Tref is the corresponding

temperature, and _ is the (dimensional) gas constant. Clearly, M is a characteristic

Mach number for the flow. Our compressible mixing layer is assumed to be an ideal
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gas with constant specific heat capacities, whose usual ratio yields the isentropic

exponent 3' - const. - 1.4. Note that the energy equation (lc) is actually a combination

of the first law of thermodynamics, the definition of entropy, and the equations of

continuity and state. This combination is convenient to use because, in principle, (la-c)

provide p, u, and p, and (ld) yields T. Therefore, by using this formulation, we obtain

a certain amount of decoupling among the equations.

To be specific, let the perturbations in the parallel shear flow be caused by a

small-amplitude (of characteristic size 0 < E << 1), three-dimensional disturbance. Let

this excitation occur far upstream (essentially at x -" -oo) in the form of two linear

instability modes of equal (complex) amplitude and of identical (real) frequency, but of

opposite spanwise (i.e. z} wavenumbers, which we will assume to be real, Suppose

further that the frequency of excitation is small. Without loss of generality, we take

AU .. U+ - U_ > 0 and, in order to ensure that the mixing layer is convectively unstable.

U_ is considered sufficiently positive (Huerre & Monkewitz 1990).

In order to continue with our formulation, we invoke a number of facts on the

behavior of low-frequency or long-wave instability modes in a supersonic mixing layer

at high Mach numbers. An a priori acceptance of these facts by the reader facilitates

the introduction of the scales for the asymptotic theory, the multi-layer structure of the

flow in the cross-stream (i.e. y) variable, and a discussion of the cumulative role of the

nonlinearities. However, the validity of these facts should become clear as we develop

our analysis; for the time being,

motivate the discussion.

First, an important similarity

we use the corresponding vortex-sheet results to

parameter that determines the growth rate of an

instability mode in a compressible mixing layer is the Mach number: m = MAU

(Jackson & Grosch 1989; Balsa & Goldstein 1990). Second, when m is larger than a

critical value, say mcr, the mixing layer is marginally stable in the classical vortex-sheet

limit (Miles 1958; Fejer & Miles 1963). The actual value of mcr depends on the
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temperature ratio across the mixing layer and the spanwise wavenumber of the

disturbance. For example, for a two-dimensional mode and a temperature ratio of

unity, mcr ,- 2_'2. In our analysis, we focus attention on mixing layers with m > mcr ;

we call these mixing layers "highly" supersonic, although we are not examining the

"hypersonic limit" m- oo. Third, these marginally stable vortex-sheet modes convect

downstream at speed Uc ,, O(1) (of course. U < Uc < U÷) such that I U: - Uel is

supersonic (in the usual aerodynamic meaning of this term) with respect to the

upper/lower streams, respectively.

Consider now a low-/requency excitation of a highly supersonic mixing layer. To

be precise, let _ ,, O(!) be the vorticity thickness of the layer and k be the characteristic

wavelength of the instability mode: we shall examine the nonlinear spatial evolution of

a pair of oblique modes when _/k = 0(o') << 1, where _ = co/Uc. Here co denotes the

radian frequency of excitation, and we may think of a as the streamwise wavenumber.

These oblique modes are actually unstable, with growth rates of O(a2). Therefore, they

appear marginally stable only in the classical vortex-sheet limit (i.e. as a -) 0 in some

sense; see §3).

These considerations imply that the complex phase speed, c, of a low-frequency

instability mode is of the form

c - U_ + a(.) + .... (2)

where (.) stands for some complex number. Therefore, the thickness of the critical

layer is O(tr). This layer is centered on the critical level y - Yc, where U(yc) ,. Uc. We

emphasize that Uc is given by classical vortex-sheet theory (see (Ta)) so that the last

equality defines Yc. Since, in a mixing layer, Uty) is a monotonic function of y, each

mode has one critical layer. We note that even if this were not the case, it would be

possible to extend our analysis at the expense of algebraic complexity (see the recent

work of Wu, Lee & Cowley 1993 on the Stokes layer). Recall that a supersonic mixing

layer may support two instability modes (the slow and fast modes: see Jackson &
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Grosch 1989); since these modes have separate critical layers, the nonlinear interaction

between these modes is too weak to be considered in our analysis. We shall justify this

remark a posteriori in §6. Thus, the nonlinear interactions that we study arise from

modes that share a single critical layer.

In order to describe the structure of the perturbations in the cross-stream

coordinate, y, the method of matched asymptotic expansions is used. Because of the

presence of three length scales 0, >> 8 >> a), the various layers in the flow are defined

as follows:

y - 0(_) - O(cr-l) . outer layers (essentially the external streams).

y - O(fi) - O(1) , main layers (most of mixing layer where U' - dU/dy # 0),

Y- Yc - O(o) , critical layer (thin layer centered on critical level).

Thus, we have a triple-layer structure for the disturbance; the geometry of these layers

is shown in figure 2.

The streamwise evolution of the unstable perturbations and the cumulative effect of

the nonlinearities are described by the method of multiple scales. In view of (2),

introduce

= a(x - Uct) , x I = a2x , (3a, b)

for the "fast" and "slow" streamwise variables. Note that on the length scale of the

mixing layer (i.e. its thickness), even _ is a "slow" variable; this is because we have

long waves, which produce a gently varying disturbance in the x-direction. The

streamwise oscillations of the instability wave occur on the space variable _, and the

slow exponential growth and the cumulative nonlinear interaction between the oblique

modes occur on the (even) slower variable x t. In keeping with the ideas of multiple

scales, we note
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and, for spatial instability,

a a_ 0-2 a (3c)a_-" _' + ax-T

a -o-u: a a . o.i aaS" _ ' az a_ ' _ ., crlz , (3d, e, /)

where 0 < at << 1 is the spanwise wavenumber. The propagation angles of the two

oblique modes are +tan-l(gUa) - O(1). Note that O/O_, O/Ox I, and O/O_" are scaled

operators that produce an O(!) effect when applied to the low-frequency perturbations

in the mixing layer. These considerations are valid in all layers; the correct scaling of

the cross-stream variable, y, depends on the specific layer under discussion (see

figure 2).

3. Outer layers

The relevant length scale in the outer layers is the wavelength. This implies that

the scaled cross-stream variable is Y - O(y/k) .. cry. The outer layers are defined by

the condition Y - O(1); in these layers. U - U(y) ,, U(Y/¢) ,, U, ,, const, as _ -* 0. under

the assumption that U(y) approaches U± exponentially quickly as y "* +oo. Similar

remarks hold for the unperturbed density and temperature profiles. Thus. the outer

layers are the two external streams in which the base flow is completely uniform; this

is essentially the vortex sheet limit. The space derivatives O/Ox, O/Oy, and O/Oz are

equally important.

All perturbation quantities (velocity, pressure, etc.) expand as

velocity: u - (u, _,, w) .. _g(u (°) + gu 0) + ...), (4a)

pressure: P ,, _v(p(0) + crp0) + ...), etc., (4b)

where the superscripted quantities are O(1). Since we are (at the moment) dealing with

linearized theory (see the discussion at the end of the "Introduction"), the factor e0r on
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the right-handsides of (4)has no significance;itis introduced here for convenience in

anticipationof the nonlinear problem, for which we need a characteristicamplitude

e << 1. This is determined in §6.

Using (3c, d), we may express our substantial derivative (le) as

{, °} (5)

After substituting (4, 5) into (la-d) and collecting terms with like powers of o', we find

that the lowest-order perturbations are given by a slight generalization of the Ackeret

solution of classical supersonic aerodynamics. Thus,

where i - v/T,

p(0) = ?M2X(xl )exp[i(_ - q,Y + _')] , (6a)

u(°) To. p(O)= - (6b)
u_.- u¢ _M2 '

(0) Tot q_ p(O)
•, (6c)U_.- U_ _M2 '

and

w(°) Wo ÷ p(O)- - - (6d)
u, - uc _M2 '

q± I (3 2 - _2)1/2 > 0 . (6e)

32 = M2(U*- - Uc)2 - 1 . (6/')
ro_

We recognize B_, > 0 as the Prandtl-Glauert factor and recall that q_, will be real

above the critical Mach number (Fejer & Miles 1963), so that the instability wave must

satisfy a radiation condition at Y ,- +co. This has been incorporated into the solution

represented by (6) in order to satisfy causality via "outgoing" waves.
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We may think of our lowest-order solution in the outer layers as a "marginally

stable" vortex-sheet mode whose complex amplitude, .X(xl), actually changes very

slightly (by O(a)) over a streamwise distance of one wavelength. In order to get the

solution in the upper (or lower) streams, we use the + sign (or - sign) throughout (6).

Note that the amplitude ,/_ is identical in both streams (i.e. _'_÷ - ./__ - ,_). This

comes from the asymptotic matching of the solutions through the intervening layers, or

simply from (6a) and the physical observation that the lowest-order perturbation

pressure must be continuous "across the vortex sheet."

In order to make a closer connection with classical supersonic aerodynamics, we

observe that, at lowest order, the outer field is produced by a "wavy wall" whose

may be estimated. Using (4a), (5), and (6c), we find thevertical displacement

displacement

70. q±

e i(U,_ Uc)2 ._g(x t )exp[i(_ + _')] . (6g)

Clearly, this "wall" has a unique displacement; therefore,

To+q+ TO_q-
1

(U÷-Uc) 2 (u_-Uc) 2"
(Ta)

speed, Uc, of the instability modes as a function of the spanwise wavenumber and the

properties of the external streams. Although it is possible to obtain (7a) from the

asymptotic matching of the solutions across the various layers, it is helpful to have this

result at hand in order to simplify the subsequent algebra. In this regard, define

A_ A TO"q±. = - > 0 . (Tb)
- uc)2

We call A the vortex-sheet displacement parameter; its effect is felt in the other layers

as well and shows up in the critical layer in the modification of the solution.

Equation (7a) serves as the dispersion relation whose solutions yield the convection
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As expected, the solution at the next order is considerably more complicated: the

homogeneous solution is essentially in the form of (6) with __. playing the role of ._,

and the particular solution has a secularity in Y, This secularity is well known in low-

frequency theories and is completely unimportant for our purposes. In any case. it may

be eliminated by further subdividing the outer layers into additional layers; the

secularity is due to the conversion of a slowly decaying exponential in Y (due to the

fact that the wave speed, c, has a small imaginary part) to its linear approximation by

its Taylor series.

The second-order perturbations account for the fact that the outer flow is slightly

unsteady in a reference frame that translates with velocity Uci. They are given by

p(')- 7M 2 {g_+(x,) - 5rg'+_Y._'(x,_exp[i(_ - q,_Y+ _')]. (Sa)

{l> }u0) T0_: P /Uc ./C'(xl)exp[i(_ - q±Y + f)] (8b)" u,-uo Tff ÷ u,-u 

{ )(1) T% q± p i(U_ + t2U+_) _,(xl)exp[i( _ _ q+_y + f)] . (8c)
" u;-u "rM2 q (U;-Uc)

w(1) " U_.IT°'--Uc[ 7-'-_Ip(1) + U._-iLl*-Uc__,(xt)exp[i(__q÷y+_)]}_ . (8d)

where

q*_ q±TO._
(Be)

and ./t;' - d./_/dx I . At this stage, _±(x_) are two arbitrary functions, which are needed

to carry out the asymptotic matching.

From the observation that the flow is homentropic in each of the outer layers

(albeit with different entropies), the perturbation density and temperature at the two

leading orders are
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(J)

pO). p
_,Tot '

(9a)

TO) = _ To. p(J) , (9b)

for / = 0, i.

This concludes our discussion of the flow in the outer layers. This flow is

extremely simple: it is essentially a small=disturbance and slightly unsteady flow. As

we shall see, the introduction of nonlinearities requires no modifications in the solutions

at the orders considered. In other words, the disturbances in the outer layers are

governed by linear dynamics to the required order of accuracy. Thus, superposition

remains valid and, because of this, we have focused our attention on only one oblique

mode, whose propagation vector points into the first quadrant of (x, z) space.

Furthermore, we have written the solutions in complex form, with the usual convention

in mind that the physical solution is given by the real (or imaginary) part of these

complex expressions. For the oblique mode whose propagation vector lies in the second

quadrant, replace t by (-t) and [ by (-_'). We now turn our attention to the main layers,

in which the gradients of the base flow profiles begin to play a role, although nonlinear

effects are still unimportant.

4. Main shear layers

The relevant length scale in the two main layers is the characteristic thickness of

the mixing layer. This implies that the scaled cross-stream variable is y/& or simply y,

since 8 - O(1). The main layers are defined by the condition y - O(1), although the

critical layer, sandwiched between them, is excluded. We must account for the

dependence of U, Po, and TO on y in these layers.

The perturbation quantities expand differently than in the outer layers. This

signifies completely different physics. As we have seen from the outer solutions,
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disturbances of O(c¢) produce a vortex-sheet displacement of O(Ea/#) - O(_) >> O(_o).

Such a displacement of a material volume in a non-uniform base flow causes

perturbations of O(_). Therefore,

u = _(?_(0)+ a_(l) + ...) , (10a)

with similar expansions for the perturbation density and temperature. On the other

hand. since 8/_ - O(a) << 1 , the main layers are "thin" so that the pressure is

impressed on them by the outer layers. Thus.

p = _o-(.3(°) + o-_O) + ...)

and

,.,.. co.(; (°) + o-;(1) + ...)

(10b)

(10c)

since, in a thin layer, o_ - O(u 8/'h). Finally,

w - eor(_,(0)+ cr_(I)+ ...) (lOd)

since spanwise velocity perturbations must originate in spanwise pressure gradients (the

previously alluded to displacement effect is absent since the base velocity is along the

x-axis). The caret indicates that a variable is written for the main layers, and the

superscript designates the place of a term in the expansion. As usual, (9(o) and (.)(I) are

O(1). The ellipses in (10) stand for higher-order terms that are not needed in this

study. Using (3c, d), we express our substantial derivative, (le), as

D--;-_+U -a U-U c) +_U 0

and, after substituting (10) and (11) into the linearized form of (1), we may obtain a set

of equations for (?)(o) and _)(1).

The lowest-order equations are simple to solve. For example, O_(°)/Oy - 0 so that

_(0) is a function of _, _', and x I . This function is determined from matching with the



-17-

pressurein the outer layers. Thus,

_(0) = _,M2 _(x I )exp[i(_ + f)] , (12a)

and, from the spanwise momentum equation, we get

_(0) = /-7"L ,Z(xl )exp[i(_ + _')] . (12b)
U-U¢

Note that (12b) matches with (6d); it also blows up as y -* Yc. This establishes the need

for the critical layer and a rescaling of the solutions there. This is discussed in §5.

Similarly, by solving the remaining equations of motion, we obtain

- - U'G(_,°)(_,_, x I ) , (12c)

_o) , (%.= - TOG,_ t_. _. xl) . (12d)

_(o) , <o)=- POG-*(},_',xl) ' (12e)

and

,.(o) _)(_,_. - (u - U¢)G _,x_), (12/)

where G(°) are two arbitrary functions of the indicated arguments (i.e. independent of

y). The + signs refer to the values of these functions in the two main layers, one above

and one below the critical layer, and the subscript _ on G__.°) denotes partial

differentiation with respect to _. Also, U' = dU/dy, T'o - dTo/dY, and p_)= dP0/dY.

The asymptotic matching of (12/) and (6c) immediately establishes

G_ ) - O--X°)= -iA./g(x I)exp[i(_ + {')] , (13)

where A is defined by (7b). Note that (12c, d, e) are perfectly consistent with our

opening remarks of this section; Eulerian perturbations in the u-velocity, temperature,

and density are proportional to the corresponding base flow gradients and arise from

the displacement of a material volume in the nonuniform base flow.
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We are also interested in the solutions at the next order; it is precisely here that

the main-layer expansion further breaks down as y -- Yc. The y-momentum equation

may be solved to yield the pressure at second order

where

fY J" Y t ,.,(I)

_(I) .--tM2 _ + [F±(y)- l]dy .+ p± (_, _'. x I) , (14a)

A +co

Vu(y)-
r.o,)- Lu;- u°l

 oO,)
7"0;

(14b)

and _(._l) are two arbitrary functions of their indicated arguments; they represent the

homogeneous solution to the boundary layer equation a/Oy .. O. It is possible to

determine them by

layers. We find

matching the pressures in the main layers to those in the outer

,,(I)
p± - 7M2ffJ±(xl)exp[i(_ + _')] , (14c)

where _._ was introduced in (8a) as part of the homogeneous solution in the outer

layers at second order.

The spanwise gradients of the pressure given by (14a) drive the spanwise velocity

component. The corresponding equation of motion may be solved for

,,(I)

_,(]) ilUT_ (15),,,2 "£(xl)exp[i(_J+ _')]- /TO p
" (U- cJej U- Ue 7M 2 "

Note that the first term on the right-hand side of (15) arises from the variation of _,(0)

on the slow scale x I , whereas the second term is due to spanwise pressure gradients.

The spanwise velocity components in the outer and main layers automatically match.
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At second order, the streamwise and cross-streamvelocitycomponents are most

easilyobtained from the energy (Ic)and x-momentum (Ib)equations. The algebra is

quite involved; therefore,we provide an intermediatestep thatdocuments the coupled

equations for _l) and 2>(1):

a_(t) a?,o) a¢,(°) u - u_ a._(°) a_,(°)
a$ + -_y = ax I "r a_ i of ' (16a)

a@°) u' = a@(°) T° a'_(°)
(U - Uc) -_- + p(1) - U o.gxI .yM2 a_ (16b)

After eliminating a_)/a_ from (16b) via (16a), substituting the lowest-order solutions

(12) into the forcing terms, and solving, we obtain

,,(,) tTo . _ ]}o- = (U± _ Uc )2 U - Uc)F_.(_, y, _', Xl) - Uq._./_'(xl)exp[i( _ + _)

where

(I)tt

+ (U - Uc)a_ _. L xl) ,

.Af(x I )exp[i(_+ _')]

+ q_._'(xl)exp[i(_ + f)],

(17a)

and G(_.t) is an arbitrary function of its arguments; the last term in (17a) represents the

homogeneous solution.

The streamwise velocity component follows from (16a) or (16b) after eliminating ?Al)

via (17a). We find

_(I) U'To. _ TO ./t_(xl)exp[i(_ + _.)]
= (U,-Uc)zF-'(_'Y'f'x') U-U¢

- U'G(_.I)(_,_',Xl) . (17c)

(I 7b)
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The asymptotic matching of the cross=stream velocity component to that in the outer

layers yields

G(1)
± - -iA__,(x I )exp[i(_ + _')]

A [Uc- U_+'2U" ]+ U± = Uc q2 - ./('(x 1) exp[i(_ + _')] . (17d)

As mentioned before, the solution in the main layer breaks down in the vicinity of

the critical level where (U - Uc) is small; see for example (12b). In order to repair the

resultant disorder in the expansion, the critical layer is introduced. The behavior of the

main solution at the edge of the critical layer is discussed more fully in Appendix A;

such a discussion is essential in order to match the solutions in the critical and main

layers.

5. The critical layer

The critical layer is centered on the critical level, y ,. Yc, and its thickness is of

O(a). Therefore, introduce the critical layer coordinate

n = _. (18)
ff

with rj - 0(I), and expand the base flow in its Taylor series about the point y ,, Pc.

We find, using (le),

o,D--t= _ + U . or2 + , (19a)

where ._o) and ._(1) are two linear operators defined by

a , 0

'c + • (19c)

The notation (')c means that (.) is evaluated at y - Pc.
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Based on the discussion presented in §4, we find that the perturbation quantities

expand as

u - _(_(o) + o._(t) + ...) . (20a)

,,. _(_,<o)+ _,(0 + ...). (206)

with similar expressions for the density and temperature, whereas

and

p " _0"(_(0) + or_(1) + ...)

0. = _z(: °) + o,: I) + ...) .

(20c)

(20d)

Note that (20c, d) are entirely consistent with the fact that the critical layer is a thin

boundary layer (in a generalized sense of this term), and the form of (20b) expresses the

fact that the spanwise velocity component in the critical layer is O(l/a) larger than that

in the main layers (see 12(b)).

The double caret indicates that a dependent variable is written for the critical

layer, and the superscript denotes the place of a term in the expansion. As usual, (.)(0)

A

and (.)0) are O(1), and they depend on the critical layer coordinate I? such that a/art of

these terms are also of O(1).

We now use (18)-(20) in the equations of motion, (1), in order to derive a sequence

of equations for the flow in the critical layer. The simplest of these comes from the y-

momentum equation and yields

so that _(J) - /0)(_, _', xt) U - O,

matching with the main layers.

art " --_- " 0, (21)

1); the actual function form may be obtained from

_(o> , 7M2 Z(xl)exp[i(_ + _.)] , (22a)

Thus, using (12a) and (14a. c), we find
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,_(I) _iTM2q,_c + [F,_(y)- 1]dy _.(xl)exp[i(_
_OO

+ "yM2__,(x I)exp[i(_ + {3] •

Since there must exist

solvability of (22b) implies

+ _')l

a unique _(I) that is independent of the

(22b)

label (-+), the

where

_+(Xl) - iQ,_i(Xl) = :__(Xl) - iQ_._(Xl), (23a)

I }+ ±oo[F_,(y)- l]dy . (23b)

Now recall from (8) that _,_ are associated with the homogeneous solutions in the outer

layers at O(a). These solutions merely reproduce the lowest-order solutions; in order to

assign a unique gauge to the amplitude _/'(x I). we set '__ = 0. Thus. we interpret .f_ as

the amplitude of the instability mode (to the required order of accuracy) in the slow

external stream, and (23a) defines _,.

The lowest-order spanwise velocity component is essentially generated by the

_'-derivative of _(0); we solve the leading-order z-momentum equation to obtain

_v(O)= i_TOc
Uc WO(O. xl)exp[i( E + _')] . (24a)

where

Wn(r/. Xl) = In(r/, xl)exp(-iotr/Xl), (24b)

X_(XlIn(r/. x 1) -- ,, = xl)n._(_l)exp(io_r/_l)d_: 1 , n = 0. 1, 2 ..... (24c)

and tx = U'c/U c. This apparently cumbersome notation involving W n and I n turns out

to be extremely useful for representing the hierarchy of solutions of the linear and
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nonlinearproblems. Therefore,we introduce it at this stage of the analysis. Note that

the asymptotic behavior of W n (n = 0, 1.... ) for large [_1 may be obtained by

successive integrations by parts. For example,

W0(rt, xl) = _ - _ + O(_ -3) (25)
ic_,/ (icxrl)2

under the (correct) assumption that .._(x I) vanishes exponentially as x t -" -oo. Similar

expressions may be obtained for Wn (n > 1) whose leading term is O(1/rll+n).

The x-momentum and energy equations for _(0) and _(0) are coupled. However,

an advantageous decoupling is effected if we first solve for a_(°)/arl. The relevant

equation (essentially for z-vorticity) is

( 0°,0,0 0_(°) = (_ (26a)

which expresses the fact that a (z - z) normal strain stretches a spanwise vortex line

and thereby changes the corresponding vorticity. The solution of (26a) may be

integrated immediately with respect to r_ to yield

_(0) _ W0(r h xl)exp[i(_ + f)] + iAUe...g(xl)exp[i( _ + f)] , (26b)
" uc

where the last term in (26b), the "constant" of integration, arises from matching (26b)

and (12c). Finally, having determined _(0) and _(0) we obtain _(0) from the lowest-order

x-momentum equation

tTo(l + _2)
U, c ._(x I)exp[i(_ + {')] - iAU e [Jg'(x I )

+ ioto./_(Xl)]exp[i(_ + _)] • (26c)

Note that (26c) automatically matches with (12D.

At this point in the analysis, ,_(x t) is still an arbitrary function of its argument; in

order to determine the dependence of the amplitude on the slow variable x 1, we must
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calculatethe O(cr) corrections to the critical layer solution. These are denoted by _.)0)

in (20); specifically, we need fl(l) in order to derive the amplitude equation.

The spanwise velocity component, _v0), obeys the inhomogeneous equation

jo)_(_>._._)_(o) _ a
7M2 ¢3_"[T°¢_0) + Tbcr/_(°)] ' (27a)

whose right-hand side is known from the lowest, order critical layer solutions, (22a, b)

and (24a). In order to solve (27a), we observe the identity

and write the solution

"" ]w,(,. Wo(,._,t-,_+ _')]- u¢ [2u¢ - o,: _rocQ_

+ _ (c(T0c - T'oc)Wo(O, x l) (27c)uc

It is possible to show that the two-term critical-layer solution for the spanwise

velocity component matches with that in the main layers in the sense of the asymptotic

matching principle of Van Dyke (i.e. 2-main of (2-critical) = 2-critical of (2-main)).

For this purpose, the behavior of the solutions in the main layers near the edges of the

critical layer is derived in Appendix A.

As before, it is simpler to solve for at,(°/ar/, the O(or) correction to the spanwise

vorticity, rather than directly for _0). The governing equation is

a r,,, ,,(,) )]__) at,<°) ,_(o)_ T__ a,_(o__o> a_(') . _ aT[Uc'' + u'_ n_,(°Or/ O--"_- - U'c 7M 2 O_ ' (28a)

whose right-hand side contains the vortex stretching and displacement effects, as well as

that of the baroclinic torque (the last term).
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If we substitutethe previously determined solutions into the right-hand side of

(28a), we obtain, after a modest amount of algebra,

O_(1) " i12°tToc _21U''c ] li_2etT°c Q- 2_2°t2T°c _exp[-i(_ + _.)]._0) Or/ I Uc - 2°_2 wl 01. Xl) - +

0
+ iAU"c Uc exp(-io_r/x I) _ [-Af(xl) exp(io_r/xl)] , (28b)

whose solution is

i12°IT0c U"c _2
0_(1) exp[-i(_ + _')] =, r/2 (U'cT_)c + Toc)r/W I (r/.U"c x t)Or/ 2U 2 W2 (r/' xt ) - Uc

iP o_T%Q_
+ Uc Wl(r/, xl) + iAU"_ ,,¢(x1) . (28c)

In deriving (28c). we have made use of an identity, which is a slight generalization of

(27b), involving the higher--order W n 's.

In order to carry out the asymptotic matching with the main layers, we first

reconstruct the streamwise velocity component

F
_(1)(r/) _ _(I)(0 ) ,, J0 ar/ dr/ ,

(29a)

where, for emphasis and brevity of notation, we only show the r/-argument of _Z(I) (of

course, the other arguments are _, _', and x I ). We cannot let r/ -, ±oo in (29a) in order to

determine the behavior of _(I) at the edges of the critical layer for the purpose of

matching, since the above integral is divergent at the upper limit.
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In order to get around this difficulty, introduce

where

fa_(1)
= 'IiAU" 

on t - U,e (1 + _2) ./((x 1) exp[i(_

8- u'-I
To u'jr .

+ _')], (29b)

(29c)

Observe that it is possible to show from (28c) and the asymptotic behavior of W n that

Z(rD is analytic for all (real) _7and is integrable at +oo. Therefore, we rewrite (29a) as

±oo r/

_(1)(0) _ _(I)(0) + I0 Z(r/)d r/ + I±ooZ(r/)d r/

.p.co,oc, }- U,c (1 + _2) log(l + 772)1/2 -.'g(x I) exp[i(_j + {')] (29d)

and note that the second integral in (29d) is of O(_ -1 ) for large ft.

We now perform the asymptotic matching principle of Van Dyke in the form "2

main of (2 critical) = 2 critical of (2 main)" for the streamwise velocity component.

With the help of Appendix A, (29d), and (26b), we find

IO o° Ucfa-* lq.-Pc q_. I:iJ+ (Y)d)'_

., _(1) I + t2
^"'u(1)(0)= - Z(ti)dr/- + AU'c

x ._(Xl) exp[i(_ + _')] + R(_, {%Xl), (30)

where R is a nonessential remainder that is actually known from matching, but whose

precise form is not needed for the determination of the amplitude equation. There is

no (±) label on R.

obtained from (23a)

introduced in (A 4).

Recall that G(_I) is defined by (17d) (_, in this equation may be

in which we set __ = 0; see earlier discussion) and J_.(.v) is
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We now have two equations for the single unknown _(I)(0). This is because we

may match the critical layer solution to the (-*) main layers. The existence of _(1)(0)

(i.e. solvability) requires

where

oo

exp[-i(_ + {3] I Z(rl)drl - vl./C'(x 1) + v2-/((Xl) .
-OO

(1 IVl " AUcU'c U_ - U¢ q_2 U+ - Uc q2 '

+ J, (y)dy
q- q+

C

(31 a)

(31b)

-Pc I +oo y}
+ q_ [I" (y) - l]dy + q+ [r,(y) - l]d . (31c)

-OO .,I)12

and F±(y) is defined in (14b).

We interpret (31a) as the evolution (amplitude) equation for .af(Xl). For a given

mixing layer, the constants v ! and v2 may be calculated, and the integral of Z may be

obtained (most simply) as follows.

Since the desired (improper) integral of Z exists in the Riemann sense, it also exists

in the sense of the Cauchy principal value, lira .f_b " #-_. It is immaterial, in

principle, which of these two procedures is used to calculate the value of this integral.

However. from practical considerations, it is simpler to calculate the Cauchy principal

value because the second term in the braces of (29b). being an odd function of rh

integrates to zero. Thus.

Z(n)dn - z(n)dr/ j_ lT - iAV"c.af(x I) exp[i(_ + t)] drl .
.,-OO

(32a)
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After substituting(28c)into (32a)and usingthe identity

oo 0

(32b)

we find

_°°_ OPz(l) - iAU"e./_(x 1) exp[i(_ + _')]_dr/., -

1 T%B(I_'i
+ _2)

j u¢

x .Af(Xl) exp[i(_ + _')] , (32c)

where we have assigned the (correct) value, 1/2, to the integral of the delta function in

(32b). Note that (32b) is a purely formal result that may be established by the use of

generalized functions (Lighthill 1978); the two possible values for the integral of the

delta function are 0 and 1 (whenever the upper limit takes on values 0- and 0 ÷,

respectively).

Although it would be tempting to conclude from these remarks that the value of the

integral on the right-hand side of (32b) is 1/2, such a conclusion can only be arrived at

by a more careful procedure. This involves the ideas of "phase jump" associated with

the logarithmic branches that arise in the stability of shear flows with critical layers

(Maslowe 1981). As is well known, this phase jump depends on the algebraic sign of

- U'c/U c, hence the presence of in (32c). Our final remark deals with a

generalization of (32b) that is also needed: When the exponent of r_ is less than the

value of k on the subscript of W k, the integral vanishes. Therefore, only the first three

terms on the right-hand side of (28c) yield a nonzero contribution.

If we now substitute (32c) into (31a), after invoking (32a), we indeed arrive at an

amplitude equation for ./((x I ).

In the nonlinear theory, which is developed in the following sections, the amplitude

equation (31a) suffers a modification. Briefly, the right-hand side remains unaltered,

but the left-hand side will contain a term additional to that given in (32c).
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6. Amplitude scaling for the nonlinear problem

In our discussion so far, the characteristic amplitude _ << 1 has not played a role

because the problem has been linearized. We now establish the distinguished scaling,

•. _(¢), which will enable us to include the effects of nonlinearities in the phase jump

condition, (32c).

Of course, as is seen from (1), there are many nonlinear terms in the equations of

motion. In order to motivate our discussion and the derivation of the scaling, we shall

use the convective nonlinearity, u • Vu, as a typical term; specifically, we write the x-

component of (lb).

Du au
D--_+ u _xx + .... 0 . (33a)

and focus attention on the first two terms of (33a).

The nonlinear terms first show up in the critical layer because the linear term.

Du/Dt. is relatively small here. After using (19a) and (3c) in (33a), we find

t °0,2 0) + oral) + .. u + 0'u _ + .... 0 . (33b)

Since, from (20a), u - O(_). the nonlinear "forcing" term in (33b) is O(t_ 2) and the

resultant first and zeroth harmonics are of O(cr_2/t72) - O(_2/_r). Note that this is

significantly larger than what would be obtained by simply squaring the fundamental

(i.e. O(e2)). A further nonlinear interaction of these harmonics with the fundamental

of O(0 produces nonlinear terms of O(_2/_) - O(_3). It is at this level in the

perturbation analysis where the fundamental reappears again for the first time due to

nonlinearities, and, in order to affect the phase jump condition (hence the evolution

equation for _4_(xi)), we require that the slow aging of the fundamental (on the scale xt)

also be present at this level. Thus, from (33b),

_r2_r_. O(_3) , (33c)
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or _ - 0(0"3/2). For convenience, we set _ - 0"3/2 without loss of generality. This is our

distinguished scaling.

It should be noted that this type of scaling argument was used by Hickernell (1984)

in a geophysical problem and by Goldstein and his colleagues in a more closely related

set of problems involving oblique modes near the neutral point (Goldstein & Choi 1989,

Goldstein & Leib 1989) and resonant triad interactions (Goldstein & Lee 1992).

It is somewhat difficult to make a direct comparison between our distinguished

scaling and those of others because of the more elaborate triple-layer structure of the

present problem (i.e. outer, main, and critical layers) as compared with the usual

double-layer structure (i.e. outer and critical layers) found by previous investigators

for their problems. Nevertheless, the following remarks may be helpful: let _0 << 1 be

the characteristic magnitude of the instability mode in the outer layers. We see from

(4) that _0 " O(_0") - 0(0"5/2) because of our distinguished scaling. Thus, 0" - O(Eo2/S);

when our result is interpreted in this way, it is reminiscent of the scaling used by

Hickernell (1984) and Goldstein & Leib (1989).

There remains to assess the importance of nonlinearities in the main and outer

layers. By using (ll) and (10a) in (33a), we find that the nonlinearities do not enter in

the main layers to the required order of accuracy. Similar remarks hold for the outer

layers. Therefore, with the exception of the critical layer, the other layers are governed

by linear dynamics. Thus, the relevant solutions for the fundamental disturbance are

essentially available in §3 and §4.

Based on the above remarks and (20), we find that the perturbation quantities in

the critical layer expand as

u - 0"3/2(_(0) + 0"1/2_(I/2)+ 0._(I)+ ...). (34a)

with similar expressions for w, p, and T, whereas
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and

p - c75/2(_(°) + _71/2_(i/2) + o-_(I) + ...)

o- = o'7/2(_ °) + gl/2_ it2) + o'_ i) + ...) ,

(34b)

(34c)

where the (_.)(1/2) terms are inserted in order to accommodate the zeroth and first

harmonics (which are, for example, in the u-equation of O(e2/ff) = O(_r2)). The nonlinear

part of the complete substantial derivative, to the accuracy required herein, becomes

(35a)

where

U • V ,. o'5/2[N (0) + o'1/2N(1/2)+ O(0")],

A/J) . _0) + ,?,.(J)_ + , i - o, 1/2. (35b)

After substituting (34) and (35) into (1) and expanding the base flow in Taylor

series about the critical point, we obtain a hierarchy of equations for (.)0) j ,, 0, !/2, I.

The lowest-order solutions, (.)(0), are essentially given by linearized theory; these were

already obtained in §5 using complex representation. For the nonlinear problem, we

consider two oblique modes, with spanwise wavenumbers of (-+t) and exponential factors

of exp[i(_ -+ _')], respectively. The complex amplitudes of these modes remain ./((xt),

although it is possible to generalize our analysis to unequal amplitudes.

After superposing the oblique modes and using the imaginary part of this complex

quantity to represent the physically real solution, we find from (22a), (24a), (26b), and

(26c),

_(o) = 7M 2 Re[i.Af exp(i_)] cos _", (36a)

_v(°) ,- /Toe Re[iW 0 exp(i_)] sin _"
uc

_x(°):. - _12T°c Re[W 0 exp(i_)] cos {"- AU'c Re[-/( exp(i_)] cos _"

(36b)

(36c)
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_0) TOc (1 + $2)
Re[,/{ exp(i0] cos

+ AU¢ Re[._' exp(i_) + i_T/ _ exp(i_)] cos _" . (36d)

where Re(.) denotes the real part of a complex number, ,/_ = J{(xi), ,,{' = dJ{(x I)/dxl,

and W 0 - Wo(r/. xl). In order to simplify the notation a bit, we make use of the

convention that, whenever the argument of a function on the right-hand side of an

equation is not shown explicitly, it is understood to be the usual field variables x I or

(r_, xl), etc. For example, /n(_, xl) will be written as I n (n = 0, 1 .... ).

It should be noted that, if we artificially set the vortex-sheet displacement

parameter, A, to zero in (36), we recover (albeit in the current notation) the critical layer

solutions used by others (e.g. Goldstein & Lee 1992). This comparison points to the

considerable algebraic complexity that we will encounter in the treatment of the

nonlinear problem. In order to keep this complexity at a minimum, we shall focus on

the new terms that come about because A # 0 (see Appendix B). We might point out

that, because of the presence of these terms, the cross-stream velocity component, _(0), is

no longer a "constant" in the critical layer but varies linearly with 7/ (see (36d)).

7. Nonlinear solutions in the critical layer

Although the linearized theory suggests that we should solve for o_(l)/a_ and

integrate this quantity from r_ = -co to r/ = +co in order to find the logarithmic phase

jump (see (32c)), the analysis of Goldstein & Lee (1992) clearly indicates that a

significant economy in algebraic manipulations is brought about in the nonlinear case by

introducing the new variable

Q- + l
Or/ 0¢/ ' (37a)

whose fundamental Fourier component, Ql.l. is defined by
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and obeys

(2 = (21,1 exp[i(_ + _)] + ....

Lie O + ic_n Ql,l = a_ + (linear terms)l, t .

The nonlinear term, .A/', in (37c) arises from the convective

equations of motion. It is defined by

.A/" - N_°)(_°/2) + l_,(_/2))+ NOn)(_,(°) + _,(o)),

(37b)

(37c)

nonlinearities in the

(37d)

with .A/_j,] denoting its fundamental component,

jV" - jr't, 1 exp[i(_ + _')] + .... (37e)

where the ellipses in (37b, e) stand for the other Fourier components. Recall (35b) for

the definitions of N(°) and N0/2).

We note that the derivation of (37c) is straightforward by taking linear

combinations of the equations for afl(1)/0_ and O_,(l)/a_, observing that a_(J)/0_ - 0

(j- 0, I/2, 1), and invoking the pressure form of the equation of continuity (i.e. the

energy equation) to eliminate + a#0)/an) in favor of + afl(0)/axl )].

The phase jump for the nonlinear problem is obtained most easily by using

Ql.lexp[i(_ + _')] in place of a_o)/arl in (32c). This is permissible since the fundamental

component of _v0) has no jump across the critical layer; a fact guaranteed by the

behavior of the main=layer solutions at the edges of the critical layer (see (A 7)).

Since Ql,l obeys a linear, inhomogeneous equation, the phase jump associated with

Q1.1 is the superposition of the effects of the two forcing terms in (37c). Insofar as the

"linear terms" in this equation can be easily obtained from (27a) and (28a), and the

phase jump associated with these terms has been calculated already, we shall not say

more about these terms. Our principal focus is to calculate the effect of the nonlinear

forcing term J'l,].
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Beforewe go any further with some general results, it is advantageous to introduce

the complex Fourier-series representation of a perturbation variable,

7(J)(_, 17, [, Xl) - Pn.m (_/' Xl) exp[i(n_ + mr)],

m r/

j - O, 1/2, (38)

where / may stand for u, _, w, etc. Of course, some of the F's may vanish. Note that

,_(j)
for a function 70) the Fourier coefficients are denoted by Fn.m. For example, if j = 0

and / -- o_, we find from (38) and (36d)

_,(o)
l,l

_.(o)
-[,-I

where

_(o)" 1.-i = 6_ , (39a)

_(o) _ (39b)" =I,I =" '

T%(I + 12) AU¢ _,
6_ - 4U,c .A_ + T(._ + io_n./() (39c)

and _) denotes the complex conjugate of (.). All other _,(0) vanish. Similar
rl.m

,,(0)
expressionshold for _(0) and Wn.m, which are derivablefrom (36c,b)and (38).

rl, m

In order to calculatethe nonlinear forcing term, 0(JV'l.l)/0_,we carry out the

operationsindicatedin (37d)by using the Fourier-seriesrepresentationof the variables.

The resultantexpressionmay be simplifiedslightlyby employing the equations

^(I/2) _,(I/2)
WO,O = W2,0 " 0 , (40a)

6(1/2) _(1/2)
2.2 + f W2.2 " 0, (40b)

dll

and the expressions for the Fourier components of (.)(0) as obtained from (36). Note

that the validity of (40a, b) is discussed in Appendix B. After a modest amount of

algebra, we find

7

on
k=l

(41a)
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where

a2 _(1/2) _ _.(I/2)Uo, o ~ azU2.o
Tz -6 __ T2., 6_ (41b, c)

an2 , an2 •

02 [u(t/2) ,,(t/2)1T3 - e b-_2 0,: + _ Wo.: j, (41a)

r4- 2u_ on on

_ o 1 ]
rs- U_ aq[iUo,2Wo+ -_ %2 an J' (41/)

^_(I/2)

r6 -_/A____u'.2 oU2.o
2 an ' (41g)

_,(t/2)

77- _ ._ aWo,2
2 a_ ' (4 ! h)

and W 0 is defined by (24b). This particular grouping of the terms is helpful in

reducing the subsequent algebra (Lee 1992, private communication); they represent the

relevant "cubic" nonlinear interactions that produce the fundamental.

Unfortunately the algebraic manipulations do become extremely tedious beyond this

point--we shall be content with presenting a few of the key steps in Appendix B.

However. the details of these manipulations may be found in the dissertation by

Gartside (1995).

The overall plan is to solve for the (.)0/2) variables in the critical layer (see (34)).

These are forced by the quadratic interactions of the fundamental with itself; the

_0/2)
solution provides the Fourier coefficients (e.g. '_o.0 , etc.) needed in (41b-h). We then

solve (37c) to obtain the seven contributions to Qt.t. say Q(_, arising from each of the

nonlinear forcing terms Tk (k - 1..... 7). The nonlinear correction to the phase jump

condition, (32c), may be found according to our previous discussion in this section. For

the purposes of illustration, some of the algebraic details are carried out in Appendix C
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for the simplest of the terms, namely, T7 . The other terms may be handled in a similar

fashion, as shown by Gartside (1995).

After a considerable amount of algebra, we find that the total nonlinear correction

to the phase-jump is

and

O0

I_coQI.I (_' Xl)dYl = _

irr T 3 sin20 cos 20 xl [-_q f-.

°c sgn(U'c) J.-[oo"X('_l)d'_l J-co2 _Z(Z + _:)16Uc5 cos60

+ 2_(_ - Z')sin; J((_l)-X(_l + _s - xl)d_l , (42a)

tan 0 = _ , (42b)

= Xl - Xl , (42c)

=_c t - x I . (42d)

It is assumed that Uc > 0 in these equations. We multiply (42a) by -4i exp[i(_ + _)] and

add this to the right-hand side of (32c) in order to obtain the total phase jump (due to

linear and nonlinear effects) to be used in the amplitude equation (31a). We shall give

the canonical form of this equation and the corresponding initial conditions (as x I -. -oo)

in the next section, after introducing a series of transformations in order to reduce the

number of parameters.

8. Discussion and conclusions

In order to present the simplest evolution equation for the amplitude, we introduce

scale transformations for the independent and dependent variables:

Xl_ V2X_

v I
v2/v I < 0 , (43a)

__(x_) - rA(x). (43b)



- 37 -

where v I and v2 are defined by (31b, c) and F is a complex constant. Recall that v I and

v2 are determined from the base flow profiles and the underlying linear instability

theory that defines the critical point. The magnitude of F (i.e. IF[ ) is chosen such that

the absolute value of the coefficient in front of the integral on the right-hand side of

(42a) becomes unity and the phase of F, together with a shift in the origin of the slow

variable x, is used to eliminate a factor of proportionality from the upstream boundary

condition. Similar transformations have been used by Goldstein and his colleagues (e.g.,

Goldstein & Lee 1992); the algebraic details are quite straightforward and will not be

repeated here.

Using these transformations, as well as (32c) and (42a, b). we find that the

amplitude equation becomes

* A _

d---d-A- iKA = sgn(v2) sgn(Ue) sgn(cos 20) A(xl)dx I
dXl oo

× (Z + _) + 2_(_ - Z)sin 2 A(,_I)A(,_ I + "_l - xl)d_t , (44)

where we have renamed our new slow variable (i.e. (43a) and a shift in the origin) to

be x I in order to make use of convenient definitions (42c, d) and to keep the notation

simple. However, the presence of A (rather than ,_) in (44) serves as a reminder that

this equation is written in terms of the "scaled" variables. The upstream condition

associated with (44) is

A "* e iKxl as x I --. -oo . (45a)

where

K - . 1 - TbcU_ - i (45b)

This condition expresses the fact that very far upstream the base flow is perturbed by a

linear instability mode.
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The solution to the amplitude equation, (44), formally depends on three parameters:

Re(K), the coefficient in front of the double integral, and 0 ffi tan -l _. We shall study

(numerically) the behavior of A(x I) as a function of these parameters; some

representative results are presented below.

In figures 3 and 4 we show representative results for Re(K) - R R as a function of

Mach number, m - AUM, for three different temperature ratios, To_/To+ , To_. The

velocity profile in the mixing layer is given by

where

U(YH)-U m + -_ tanh(y H) (46a)

T0(Y H) - 1 2 [1 - tanh(YH)] + Z__ m2[1 = tanh2(YH) ] (46c)

where YH is the Howarth=Dorodnitsyn variable. It is related to the "physical" cross-

stream coordinate, y, by the transformation

l (46d)

These profileswere alsoused by Jackson & Orosch (1989)in theirstudy of the linear

stability of compressible mixing layers.

it is seen from figures 3 and 4 that, generally, K R, is of order unity and varies

roughly linearly with m, for m sufficiently large. The fast and slow modes are defined

by the inequalities Uc > U m and U c < U m, respectively, where U c is the convection

speed of the instability mode as obtained from the vortex-sheet dispersion relation, (Ta).

Note that when the temperature ratio is unity, the two curves for K R are mirror images

of each other about the horizontal coordinate axis. This is because (U - U m) is an odd

function of y - YH"

1 - To_

and the temperature profile is specified by Crocco's relation

Urn = U+ + U_2 ' AU ,= U+ - U_ > 0 (46b)
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Interestingly enough, the solution of the nonlinear amplitude equation, (44), does not

depend on KR in an essential way. To see this, consider the trial solution

A - IA)e . (47)

which assumes that the phase of the complex

substituting (47) into (44) and simplifying, we find

amplitude is linear in x I . After

0

= sgn(v2) sgn(U'c) sgn(cos 20) I I A(Z + xl) I dZ

Z

× I 5_(2,_)IA(_ +xt)LIA(2 +2+x,)ld_, (48a)

where the kernel, 5U(Z, 2) is defined by

(48b)

This nonlinear equation for IAI is independent of K R.

Furthermore, for our mixing layer. U'c > 0 and, for profiles given by equation (46),

v2 turns out to be negative (as obtained from numerical evaluations of (3 l c)). Thus the

coefficient in front of the double integral in (48a) is _-1 according to 0 < rr/4. The

algebraic kernel in (48) is negative over the domain of integration.

Thus, for 0 < n/4, the amplitude of the oblique mode monotonically increases with

coordinate x I . This observation is confirmed in figure 5; the corresponding phase of A

is shown in figure 6, The latter figure establishes the validity of the trial solution, (47),

in this particular case.

The numerical result in figure 5 suggests that IA(* )I develops a singularity at

some finite value of x ! , say _s). This observation is consistent with the findings of

other investigators (Goldstein & Choi 1989, Goldstein & Leib 1989); indeed, near the

singularity, the dominant terms in (48a) can be balanced by a solution of the form
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-- x_s) from below.as x I

In order to establish the

inequality

0

I IA(2 + d2
-,,-oo

~ 1
]A(xl )l [x_s) _ Xl ]3 (49)

presence of a singularity when O < n/4, consider the

A

i0Afz>- dZ _)[A(_. + Z + xl)lSd_" .
--OO .d' --C_O

(50)

which holds because IAI is a monotonically increasing function, and Z g 0 and _ _ 0

over the domain of integration. Both sides of (50) are positive. The integral on the

right-hand side of (50) may be reduced to a one-dimensional integral after the

introduction of new variables of integration; the final result is

where

OO

"Q I0 '_41A(Xl - _)I3d_ , (51a)

f2= 1 + >0. (51b)

Motivated by the discussion above, we introduce the comparison equation

O0

d__&g_ I0dx_ g - f2 pgS(x t - _)d_ (52a)

with upstream boundary condition

g "" exl as x t -_ -oo , (52b)

for the positive function g = g(x ! ). This function serves as a lower bound for ]A(x] )l;
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[ A(xl )1 > g(xl). The formal solution of (52) is

where, for n = O, 1, 2.....

O0

g(xl) = eXl _ ane 2nxl , (53a)

n-O

n _-m

' ZZan÷l = 2--_- (n + 1)(n + 3/2) 5 amaran-m-r (53b)
m=O r-O

with a 0 = 1. It is found numerically that the "tail end" of (53a) is asymptotic to a

power series whose radius of convergence, x_r), can be obtained from the use of the

ratio test as

1
x_r) = 2.91 - -_ log f2 (54)o

Since for x I > 0, (53a) is a series with positive terms, g must become singular at x I =

x_r). Therefore, [A(xl) [ must become singular at a finite value of x t = x_S) _ x_r) in view

of the fact that IAI g.

It is easy to show that the solution to the classical Landau equation,

with upstream condition

does become singular at

d.._.hh_ h = _2h3 (55a)
dx I

h -, exl as x I -* -oo , (55b)

1 log _2 (55c)
XI -- "_

Evidently, the averaging of the nonlinear term, as implied by (52a) and (48a), does not

eliminate the singularity, but merely shifts it downstream.

Representative numerical results for 0 > n/4 are presented in figures 7 and 8. It is

seen from figure 8 that a sectionally linear phase is also consistent with nonlinear

amplitude equation (44); this observation provides a generalization of trial solution (47).
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Although the behavior of the magnitude of the amplitude (figure 7) appears

complicated, an explanation for this behavior is quite simple. It is based on the fact

that the nonlinear term in (44) depends on the entire history of the amplitude and not

only on its value at the current location.

For x I less than about 1.85, equation (48a) for IAI is applicable since the phase is

linear. From this equation, we see that the effect of the nonlinear integral is stabilizing

because sgn(cos 28) < 0. As a result, A diminishes to zero (at x I -_ 1.85) but dA/dx t is

nonzero since the latter is balanced by the nonlinear integral that takes into account the

entire evolution history of the complex amplitude. Hence, A will smoothly pass through

the origin in the complex plane, thereby suffering a phase jump of _+_r. For x I

somewhat larger than 1.85, the effect of this phase jump is to render the coefficient of

d IA t/dx I in (48a) negative or, equivalently, to make the nonlinear terms destabilizing.

As x I increases substantially from its value at the first spike (= 1.85), the effect of

the initial phase jump begins to show up in the calculation of the nonlinear integral.

When this occurs to a significant extent, the effect of the phase jump cancels out

between the cubic terms and the linear terms, and the nonlinear integral is again

stabilizing. Thereby the second spike (or phase jump) near x I _ 3.05 is generated.

This entire "quasi-periodic" scenario, in which the nonlinear terms are stabilizing or

destabilizing over certain intervals of the xt-axis, results in the successive spikes of

figure 7 and in the phase jumps shown in figure 8. The overall trend is a substantial

increase in the magnitude of A (say, for x I < 4.5), although there are narrow regions in

the streamwise direction in which the amplitude may be small. This streamwise

modulation of the disturbance is possible since the nonlinear interaction occurs in the

form of an integral that is sensitive to upstream values of the amplitude.

We emphasize that the solutions for the complex amplitude were obtained by

solving (44) numerically; trial solution (47) and equation (48a) for IAI provide a

convenient framework for the interpretation of the numerical results.
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Finally, when 0 - _r/4, the lowest-order nonlinear terms, as given by (42a), vanish.

In this case, the nonlinear interaction between two oblique modes occurs at higher order

in the small amplitude parameter. In order to understand this result, it is necessary to

recall that (in linear theory for a slightly unstable mode) the velocity component of an

oblique mode normal to the wave front is finite, whereas the component along the wave

front is singular (in the critical layer).

When 0 - rr/4, the included angle between the oblique modes is _r/2, so that the

component of the fluid velocity normal to one family of wave fronts will be completely

dominated by the tangential velocity along the second family of wave fronts.

Therefore, the nonlinear interaction between these modes is expected to be weaker than

in the general case when both waves contribute (roughly equally) to the tangential

velocity component along the wave fronts.

To summarize, the nonlinear interaction between two oblique modes in a supersonic

mixing layer is governed by a nonlinear integro-differential equation of the Hickernell-

Goldstein type. For each propagation angle, 0, the magnitude of the scaled amplitude,

rA I, is given by a universal curve (in other words, the only essential similarity

parameter is 0). When 0 < _r/4, the disturbance undergoes a monotonic and sudden

increase in amplitude, which terminates in a singularity at a finite streamwise location.

On the other hand, for 0 > _r/4, the streamwise development of IAI is characterized by

a series of modulations arising from the dual nature of the nonlinearity, which can be

stabilizing or destabilizing, depending on the streamwise position.
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Research Center under grant NAG3-781. One of us (TFB) has benefited from

stimulating discussions with Drs. M. E. Goldstein, L. Hultgren, and S. S. Lee on several

aspects of this problem. The help of Sang Soo Lee, who provided some of his

handwritten notes and a computer code, is deeply appreciated. Both items were used to

provide an independent check on the validity of the results presented herein.
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Appendix A.

critical layer

The solution in the two main layers (denoted by +) is given in §4.

derive the behavior of this solution when (y - Yc)

approximation for the integral involving (F_+)-l, (see (17b)).

Yc small, from (14b).

where

and

Behavior of the solution in the main layers at the edge of the

;--7-:,,- C. + - + O(i) ,
_ - X

In order to

is small, we first derive an

By Taylor series, for X = y -

(A l)

(v:- v )2ro__u_ IA21
C± - To._ U_2

(A 3)

If B vanishes, the generalized inflection point criterion of Lees & Lin (1946) is satisfied.

We assume that l/F± is analytic at all y # Yc.

The above remarks imply that

- F±(y) -L X_ x(l + X2)J

is an analytic function for all y and is integrable at y = +_oo. The denominator under B

has been chosen with this objective in mind. Thus,

f+Vll ] /c Iff I-oo r,-_) - l dy = J+(y)dy + J.(y)dy + C. 1
_00 - C - - X

Ixl 1+ B log (1 + X2) 1/2 . (A 5)

In view of these preparatory remarks, the two-term critical layer expansion of the

two-term main solution follows from (12), (17). and (A 5):
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+ cr_(1))exp[-i(_+ _')]-.,iA(Uc + u)gU'c)._(xI)

+ °'AU'c "Af'(xl) + ±Yc q. ooJt(y)dy ":((Xl)

+JUno -a(I +_2) U'c U'_2
-4(xl )

• , ..(1)
- c_C/cCJ± exp[-i(_ + _')] , (A 6)

where G_1) is defined by (17d). Similarly,

• ! + ..¢(x t_,(o) + tr2_(x exp[-t(_ + _')] "-, U'¢rt c crT_)crt - 2U'c

i_ [. o-T%U"¢r_
, _4,(x I)

U,c2_2 ['_cToc + uU'cToc_ + _UcToc_ - e_

+ Ucr)
(A 7)

where _._ and Q_. = const, are defined by (23a, b), respectively. Of course, in view of

these equations, the terms in the braces are independent of the label (-+).

Note that it is possible to give the corresponding results for the cross-stream

velocity component, and for the perturbation density and temperature. Since these

results are not needed for the derivation of the amplitude equation, we shall omit them

for brevity. Observe that u and w in the main layers are more singular as _ -, 0 (i.e.

Y " .Vc) for oblique modes (I # 0) than for two-dimensional modes (t .- 0). This is

really the main reason why the amplitude scalings (i.e. e - e(cr)) are different for the

corresponding nonlinear problems.
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Appendix B. Quadratic nonlinearities

The equations that govern the evolution of the quadratic nonlinearities (i.e.

and zeroth harmonics) in the critical layer are

first

__0)_(I12) + U,cA-(II2) ,, _ N(o)_(o) , (B In)

-#-_°)_v012)= - N(°)_ (°) , (8 Ib)

0_0/2 ) a_/2 ) a#,(_/2)
o--/--÷ o--_-+ _ _7 "o, I8 ic)

where .¢_'(0)and N(o) are defined by (19b) and (35b), respectively. These equations may

be obtained from (I), (34), and (35). Because the critical layer is a thin layer, a_ol2)/ar_

•, o; therefore, without loss of generality, we have set _(I12) ,, 0. Thus, the outer and

main expansions contain no terms of the form [o']12(.)(t12)].

Next, we multiply out the nonlinear forcing terms on the right-hand sides of

(B In, b) and write them in Fourier-series representation:

Z _( t/2)

N(°)_ (°) 2 2 _°' a.m

Aflo)_v(o) n--2 m--2 _.(1/2)
"_/ n,m

] exp[i(n_ + m_')] ,
(B 2a, b)

°o,o " (GL) 8t + ,7
A,2T%_.2' aWo+ c.c.,

8 &)
(B 3a)

where the 3"'s and ,ffC's are the complex Fourier coefficients. Direct calculation shows

that _'401./2) - _21/2) - 0; these, in view of (Blb) and null initial conditions at x I -. -oo,

immediately imply (40a).

We recall that the lowest order critical-layer solutions (e.g. (39)) are linear in the

vortex sheet parameter A and, setting A = 0, we recover the corresponding critical-layer

solutions given by Goldstein & Lee (1992). Thus, for the sake of brevity, we write
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,_.(t/2) AI2°tTo_ ff6 [W0 014"0] AI2TOK ._, 3W 0o,2 " (GL) + 16i = _ Or/ 16 _ + c.c. , (B 3b)

8 8 Or)

[ aWo3 Wo- r/ a,TJ " (B 3c)

0.2 = (OL) + 16i [W° + r/ 01) J + 16 Or/
c.c., (B 3d)

where (GL) denotes the terms that are available, at least in principle (see (5.11), (5.13),

(5.25), and (5.26) in Goldstein & Lee (1992)). Of course, the notation is very different,

so it is not easy to make a symbol-by-symbol comparison; nevertheless, even a quick

glance reveals that the solutions are equivalent because they contain the same basic

information. Note also that c.c. refers to the complex conjugate of the terms that have

A as a factor in them.

After using (B 3) and (B 2) in the governing equations, (B 1), and solving these for

the Fourier coefficients of the velocity components, we find

_(I/X) Al°tT0e .'_ W I - c.c. (B 4a)
Wo,2 =(GL) + 16iU c

_(1/2) tT0c/2A (._ W 0 - -_ I_ 0) (B 4b)
0.2 =(GL) + 8U e

_(I/2) = tT0c/2A iU'cA2 ._2 (B 4c)
2,o =(GL) 4U c :f W° - 8

_(t/2) tT%al2A _ W l + c.c. (B 4d)
o.o = (GL) + 8 U c

_(t/2) tT°q°d2A .._ W 1 + c.c. (B 4e)
0,2 =(GL)+ 16U c

_ (t/2) tTo¢(xl2A

2,0 = (GL) + 8 Uc .AfW l . (B 4/)



- 48 -

Recall that Wn(_, Xl) ** V_'n (rl ** 0, 1, 2...) are defined by (24b) and behave as rF(l+n)

for q -* _:oo. Thus, it is possible to match the entire critical-layer solution to that in the

main layers as given by the linearized theory of §4. Of course, this asymptotic

matching is carried out only to the order of accuracy of the analysis. Also note that

when the expressions in (41b-h) are multiplied out using (39c) and (B 4), T k (k - 1, 2 .....

7) become polynomials of degree no greater than two in the vortex sheet displacement

parameter, A. The evolution equation for the amplitude is expected to depend only on

even powers of A, since the mirror image of the wavy wall, (6g), cannot change the

stability characteristics of the oblique modes. Details may be found in Gartside (1995).

Our final remark concerns the validity of (40b). This result follows immediately

from (B lc) under the observation that a_'_l/2)/0W = 0. This comes from the initial

conditions at x I -- -co and asymptotic matching. (Note that _,_1/2) can be shown to satisfy
t

• 2_" 1/2) 2(3/3x I + 2zo_)(3 _.2 /07 ) = 0; we omit the details, however.)

Appendix C. An illustrative calculation for the phase jump arising from the

nonlinear terms

Let us consider the contribution of the nonlinear forcing term, T7, to the phase-

jump equation. After using (B 4a) in (41h) and solving (37c) for Q(_)I, we obtain

iA212_3T°_ f xlQ(_),(rl. x l) = 32Uc ._:2(_t)72( _, ._,) exp[io_(2_t - xt)]d_,

iA 212 cx3Toq I_ x l32Uc exp(-i_xl) I -:'_(_1)1212(_, ._l)d_l
O0

+ A (...), (C I)

where, for the purposes of illustration, we consider only the first two terms in (C 1).

These are proportional to A2 . Recall that In(*], x 1) (n = 0, 1.... ) are defined by (24c)

and Q(tT)l is the contribution of T7 to Ql.t.
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In order to evaluate

(C 2)

we substitute the definition of 12 into (C 1) and use the well-known result

OO

2it 6(x) = I_ exp(ixo)do .
Oo

(C 3)

where 6(x) is the Dirac delta function. The triple integral in (C 2) is thus reduced to a

double integral; the latter is further reduced to a single integral by the substitution

property of the delta function. The final result is

f_ iAZI2cPT% ___ f xz^ 2 2 ^ _ ^Q(7) (q. x,)dr_ = 32Ue _oo(x, - x,) .Af (x,)..C(2x, - x,)d._,

+ A (...), (C 4)

to which the second term on the right-hand side of (C 1) has actually made a null

contribution. We emphasize that this single integral represents a new term that has not

appeared previously in the literature for the oblique-mode self-interaction problem.
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